Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Jun 8;276(23):20300-8. Epub 2001 Feb 26.

Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLPP1 gene in response to stress.

Author information

  • 1CEA/Cadarache, DSV-DEVM Laboratoire de Radiobiologie Végétale, 13108 Saint Paul-lez-Durance, France.


An Arabidopsis thaliana gene (AtLPP1) was isolated on the basis that it was transiently induced by ionizing radiation. The putative AtLPP1 gene product showed homology to the yeast and mammalian lipid phosphate phosphatase enzymes and possessed a phosphatase signature sequence motif. Heterologous expression and biochemical characterization of the AtLPP1 gene in yeast showed that it encoded an enzyme (AtLpp1p) that exhibited both diacylglycerol pyrophosphate phosphatase and phosphatidate phosphatase activities. Kinetic analysis indicated that diacylglycerol pyrophosphate was the preferred substrate for AtLpp1p in vitro. A second Arabidopsis gene (AtLPP2) was identified based on sequence homology to AtLPP1 that was also heterologously expressed in yeast. The AtLpp2p enzyme also utilized diacylglycerol pyrophosphate and phosphatidate but with no preference for either substrate. The AtLpp1p and AtLpp2p enzymes showed differences in their apparent affinities for diacylglycerol pyrophosphate and phosphatidate as well as other enzymological properties. Northern blot analyses showed that the AtLPP1 gene was preferentially expressed in leaves and roots, whereas the AtLPP2 gene was expressed in all tissues examined. AtLPP1, but not AtLPP2, was regulated in response to various stress conditions. The AtLPP1 gene was transiently induced by genotoxic stress (gamma ray or UV-B) and elicitor treatments with mastoparan and harpin. The regulation of the AtLPP1 gene in response to stress was consistent with the hypothesis that its encoded lipid phosphate phosphatase enzyme may attenuate the signaling functions of phosphatidate and/or diacylglycerol pyrophosphate that form in response to stress in plants.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk