Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Genome Biol. 2001;2(3):RESEARCH0009. Epub 2001 Mar 6.

The cohesin complex: sequence homologies, interaction networks and shared motifs.

Author information

  • 1Computational Genome Analysis Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK. Susan.Jones@icrf.icnet.uk

Abstract

BACKGROUND:

Cohesin is a macromolecular complex that links sister chromatids together at the metaphase plate during mitosis. The links are formed during DNA replication and destroyed during the metaphase-to-anaphase transition. In budding yeast, the 14S cohesin complex comprises at least two classes of SMC (structural maintenance of chromosomes) proteins - Smc1 and Smc3 - and two SCC (sister-chromatid cohesion) proteins - Scc1 and Scc3. The exact function of these proteins is unknown.

RESULTS:

Searches of protein sequence databases have revealed new homologs of cohesin proteins. In mouse, Mmip1 (Mad member interacting protein 1) and Smc3 share 99% sequence identity and are products of the same gene. A phylogenetic tree of SMC homologs reveals five families: Smc1, Smc2, Smc3, Smc4 and an ancestral family that includes the sequences from the Archaea and Eubacteria. This ancestral family also includes sequences from eukaryotes. A cohesion interaction network, comprising 17 proteins, has been constructed using two proteomic databases. Genes encoding six proteins in the cohesion network share a common upstream region that includes the MluI cell-cycle box (MCB) element. Pairs of the proteins in this network share common sequence motifs that could represent common structural features such as binding sites. Scc2 shares a motif with Chk1 (kinase checkpoint protein), that comprises part of the serine/threonine protein kinase motif, including the active-site residue.

CONCLUSIONS:

We have combined genomic and proteomic data into a comprehensive network of information to reach a better understanding of the function of the cohesin complex. We have identified new SMC homologs, created a new SMC phylogeny and identified shared DNA and protein motifs. The potential for Scc2 to function as a kinase - a hypothesis that needs to be verified experimentally - could provide further evidence for the regulation of sister-chromatid cohesion by phosphorylation mechanisms, which are currently poorly understood.

PMID:
11276426
[PubMed - indexed for MEDLINE]
PMCID:
PMC30708
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk