Display Settings:

Format

Send to:

Choose Destination
Genes Dev. 2001 Mar 15;15(6):774-88.

A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts.

Author information

  • 1Department of Molecular Biophysics and Biochemistry, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06536, USA.

Abstract

An in vitro system that recapitulates the in vivo effect of AU-rich elements (AREs) on mRNA deadenylation has been developed from Xenopus activated egg extracts. ARE-mediated deadenylation is uncoupled from mRNA body decay, and the rate of deadenylation increases with the number of tandem AUUUAs. A novel ARE-binding protein called ePAB (for embryonic poly(A)-binding protein) has been purified from this extract by ARE affinity selection. ePAB exhibits 72% identity to mammalian and Xenopus PABP1 and is the predominant poly(A)-binding protein expressed in the stage VI oocyte and during Xenopus early development. Immunodepletion of ePAB increases the rate of both ARE-mediated and default deadenylation in vitro. In contrast, addition of even a small excess of ePAB inhibits deadenylation, demonstrating that the ePAB concentration is critical for determining the rate of ARE-mediated deadenylation. These data argue that ePAB is the poly(A)-binding protein responsible for stabilization of poly(A) tails and is thus a potential regulator of mRNA deadenylation and translation during early development.

PMID:
11274061
[PubMed - indexed for MEDLINE]
PMCID:
PMC312653
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk