Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Neurosci. 2001 Mar;17(3):551-60.

CD81 regulates neuron-induced astrocyte cell-cycle exit.

Author information

  • 1Department of Neuroscience, Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.

Abstract

Astrocytes respond to contact with neurons by cell-cycle arrest and complex process formation. In our effort to discover the molecular mechanisms that underlie this phenomenon we have identified a known tetraspanin, CD81, as a critical component of astrocyte responses to neuronal differentiation signals. Here we show that CD81 is expressed on the surface of the astrocyte and that its expression level can be modulated by contact with neurons. Further, using three separate antibodies, 2F7, Eat1, and Eat2, which recognize unique epitopes in the extracellular domains of the CD81 protein, we show that there is a unique domain, recognized by Eat1, that is required for astrocyte cell-cycle withdrawal in response to neurons. This is likely due to conformational changes in the CD81 molecule, as inclusion of 2F7 actually augments neuron-induced astrocyte growth arrest. The critical nature of CD81 in normal astrocyte-neuron biology was confirmed by using mice in which CD81 had been deleted by homologous recombination. Astrocytes null at the CD81 locus were blind to the proliferative arrest encoded on the neuronal cell surface. Taken together, these data strongly suggest that CD81 is a critical regulator of neuron-induced astrocytic differentiation.

Copyright 2001 Academic Press.

PMID:
11273649
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk