Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2001 Mar 15;410(6826):376-80.

Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5.

Author information

  • 1Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA. bibbj@rockvax.rockefeller.edu

Abstract

Cocaine enhances dopamine-mediated neurotransmission by blocking dopamine re-uptake at axon terminals. Most dopamine-containing nerve terminals innervate medium spiny neurons in the striatum of the brain. Cocaine addiction is thought to stem, in part, from neural adaptations that act to maintain equilibrium by countering the effects of repeated drug administration. Chronic exposure to cocaine upregulates several transcription factors that alter gene expression and which could mediate such compensatory neural and behavioural changes. One such transcription factor is DeltaFosB, a protein that persists in striatum long after the end of cocaine exposure. Here we identify cyclin-dependent kinase 5 (Cdk5) as a downstream target gene of DeltaFosB by use of DNA array analysis of striatal material from inducible transgenic mice. Overexpression of DeltaFosB, or chronic cocaine administration, raised levels of Cdk5 messenger RNA, protein, and activity in the striatum. Moreover, injection of Cdk5 inhibitors into the striatum potentiated behavioural effects of repeated cocaine administration. Our results suggest that changes in Cdk5 levels mediated by DeltaFosB, and resulting alterations in signalling involving D1 dopamine receptors, contribute to adaptive changes in the brain related to cocaine addiction.

PMID:
11268215
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk