Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nature. 2001 Mar 1;410(6824):63-4.

Superconductivity at 39 K in magnesium diboride.

Author information

  • 1Department of Physics, Aoyama-Gakuin University, Tokyo, Japan.

Abstract

In the light of the tremendous progress that has been made in raising the transition temperature of the copper oxide superconductors (for a review, see ref. 1), it is natural to wonder how high the transition temperature, Tc, can be pushed in other classes of materials. At present, the highest reported values of Tc for non-copper-oxide bulk superconductivity are 33 K in electron-doped Cs(x)Rb(y)C60 (ref. 2), and 30 K in Ba(1-x)K(x)BiO3 (ref. 3). (Hole-doped C60 was recently found to be superconducting with a Tc as high as 52 K, although the nature of the experiment meant that the supercurrents were confined to the surface of the C60 crystal, rather than probing the bulk.) Here we report the discovery of bulk superconductivity in magnesium diboride, MgB2. Magnetization and resistivity measurements establish a transition temperature of 39 K, which we believe to be the highest yet determined for a non-copper-oxide bulk superconductor.

PMID:
11242039
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk