Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Clin Invest. 2001 Mar;107(5):565-73.

Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice.

Author information

  • 1Department of Biosciences at Novum, Karolinska Institutet, Huddinge, Sweden.

Abstract

The nuclear oxysterol-receptor paralogues LXRalpha and LXRbeta share a high degree of amino acid identity and bind endogenous oxysterol ligands with similar affinities. While LXRalpha has been established as an important regulator of cholesterol catabolism in cholesterol-fed mice, little is known about the function of LXRbeta in vivo. We have generated mouse lines with targeted disruptions of each of these LXR receptors and have compared their responses to dietary cholesterol. Serum and hepatic cholesterol levels and lipoprotein profiles of cholesterol-fed animals revealed no significant differences between LXRbeta(-/-) and wild-type mice. Steady-state mRNA levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase, farnesyl diphosphate synthase, and squalene synthase were increased in LXRbeta(-/-) mice compared with LXRbeta(+/+) mice, when fed standard chow. The mRNA levels for cholesterol 7alpha-hydroxylase, oxysterol 7alpha-hydroxylase, sterol 12alpha-hydroxylase, and sterol 27-hydroxylase, respectively, were comparable in these strains, both on standard and 2% cholesterol chow. Our results indicate that LXRbeta(-/-) mice - in contrast to LXRalpha(-/-) mice - maintain their resistance to dietary cholesterol, despite subtle effects on the expression of genes coding for enzymes involved in lipid metabolism. Thus, our data indicate that LXRbeta has no complete overlapping function compared with LXRalpha in the liver.

PMID:
11238557
[PubMed - indexed for MEDLINE]
PMCID:
PMC199420
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Journal of Clinical Investigation Icon for PubMed Central
    Loading ...
    Write to the Help Desk