Send to:

Choose Destination
See comment in PubMed Commons below
Circulation. 2001 Feb 27;103(8):1051-6.

The impact of calcification on the biomechanical stability of atherosclerotic plaques.

Author information

  • 1MassachusettsInstitute of Technology, Cambridge, MA, USA.



Increased biomechanical stresses in the fibrous cap of atherosclerotic plaques contribute to plaque rupture and, consequently, to thrombosis and myocardial infarction. Thin fibrous caps and large lipid pools are important determinants of increased plaque stresses. Although coronary calcification is associated with worse cardiovascular prognosis, the relationship between atheroma calcification and stresses is incompletely described.


To test the hypothesis that calcification impacts biomechanical stresses in human atherosclerotic lesions, we studied 20 human coronary lesions with techniques that have previously been shown to predict plaque rupture locations accurately. Ten ruptured and 10 stable lesions derived from post mortem coronary arteries were studied using large-strain finite element analysis. Maximum stress was not correlated with percentage of calcification, but it was positively correlated with the percentage of lipid (P:=0.024). When calcification was eliminated and replaced with fibrous plaque, stress changed insignificantly; the median increase in stress for all specimens was 0.1% (range, 0% to 8%; P:=0.85). In contrast, stress decreased by a median of 26% (range, 1% to 78%; P:=0.02) when lipid was replaced with fibrous plaque.


Calcification does not increase fibrous cap stress in typical ruptured or stable human coronary atherosclerotic lesions. In contrast to lipid pools, which dramatically increase stresses, calcification does not seem to decrease the mechanical stability of the coronary atheroma.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk