Tissue engineering of peripheral nerves: A comparison of venous and acellular muscle grafts with cultured Schwann cells

Plast Reconstr Surg. 2001 Feb;107(2):485-94; discussion 495-6. doi: 10.1097/00006534-200102000-00026.

Abstract

Bioengineering is considered to be the laboratory-based alternative to human autografts and allografts. It ought to provide "custom-made organs" cultured from patient's material. Venous grafts and acellular muscle grafts support axonal regeneration only to a certain extent because of the lack of viable Schwann cells in the graft. We created a biologic nerve graft in the rat sciatic nerve model by implanting cultured Schwann cells into veins and acellular gracilis muscles, respectively. Autologous nerve grafts and veins and acellular muscle grafts without Schwann cells served as controls. After 6 and 12 weeks, regeneration was assessed clinically, histologically, and morphometrically. The polymerase chain reaction analvsis showed that the implanted Schwann cells remained within all the grafts. The best regeneration was seen in the control; after 12 weeks the number of axons was increased significantly compared with the other grafts. A good regeneration was noted in the muscle-Schwann cell group, whereas regeneration in both of the venous grafts and the muscle grafts without Schwann cells was impaired. The muscle-Schwann cell graft showed a systematic and organized regeneration including a proper orientation of regenerated fibers. The venous grafts with Schwann cells showed less fibrous tissue and disorganization than the veins without Schwann cells, but failed to show an excellent regeneration. This might be attributed to the lack of endoneural-tube-like components serving as scaffold for the sprouting axon. Although the conventional nerve graft remains the gold standard, the implantation of Schwann cells into an acellular muscle provides a biologic graft with basal lamina tubes as pathways for regenerating axons and the positive effects of Schwann cells producing neurotrophic and neurotropic factors, and thus, supporting axonal regeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation / physiology*
  • Cells, Cultured
  • Male
  • Microsurgery
  • Muscle, Skeletal / innervation*
  • Muscle, Smooth, Vascular / innervation*
  • Nerve Regeneration / physiology*
  • Peripheral Nerves / transplantation*
  • Rats
  • Rats, Wistar
  • Schwann Cells / cytology*