Send to

Choose Destination
See comment in PubMed Commons below
Environ Pollut. 2001;112(1):41-51.

Nutrient losses by surface run-off following the application of organic manures to arable land. 1. Nitrogen.

Author information

  • 1ADAS Wolverhampton, Woodthorne, Wolverhampton WV6 8TQ, UK.


Research was conducted on nitrogen (N) surface run-off losses following organic manure applications to land, utilising a purpose-built facility on a sloping site in Herefordshire under arable tillage. Different rates and timing of cattle slurry, farmyard manure and inorganic N and phosphorus (P) fertiliser were compared, over a 4-year period (1993-97). P losses from the same studies are reported in a separate paper. The application of cattle slurries to the silty clay loam soil increased the loss of solids and NH4(+)-N in surface water flow compared to control plots receiving inorganic fertiliser only, or no treatment, but had little effect on NO3(-)-N losses by this route. Results were consistent with other observations that rainfall events immediately after manure applications are particularly likely to be associated with nutrient run-off losses. Losses via subsurface flow (30 cm interflow) were consistently much lower than via surface water movement and were generally unaffected by treatment. Increasing slurry application rate and, in particular, slurry solids loading, increased solids and NH4(-)-N losses via surface run-off. The threshold, above which the risk of losses via surface run-off appeared to be greatly increased, was ca. 2.5-3.0 t/ha slurry solids, which approximates to the 50 m3/ha limit suggested for slurry within UK 'good agricultural practice'. Sealing of the soil surface by slurry solids appears to be a possible mechanism by which polluting surface run-off may occur following slurry application on susceptible soils. Total losses of NH4(+)-N and NO3(-)-N during the 4-year monitoring period were insignificant in agronomic terms, but average soluble N concentrations (NH4(+)-N + NO3(-)-N) in run-off, ranging from ca. 2.0 mg/l, up to 14.0 mg/l for the higher rate slurry treatments. Peak concentrations of NH4(+)-N > 30 mg/l, are such as to be of concern in sensitive catchments, in terms of the potential for contribution to accelerated eutrophication and adverse effects on freshwater biota.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk