Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2001 Feb;13(2):314-27.

Neural correlates of simple and complex mental calculation.

Author information

  • 1Groupe d'Imagerie Neurofonctionnelle, UMR 6095 CNRS, CEA, Universit√© de Caen & Universit√© de Paris V, Caen, France.

Abstract

Some authors proposed that exact mental calculation is based on linguistic representations and relies on the perisylvian language cortices, while the understanding of proximity relations between numerical quantities implicates the parietal cortex. However, other authors opposed developmental arguments to suggest that number sense emerges from nonspecific visuospatial processing areas in the parietal cortex. Within this debate, the present study aimed at revealing the functional anatomy of the two basic resolution strategies involved in mental calculation, namely arithmetical fact retrieval and actual computation, questioning in particular the respective role of language and/or visuospatial cerebral areas. Regional cerebral blood flow was measured with positron emission tomography while subjects were at rest (Rest), read digits (Read), retrieved simple arithmetic facts from memory (i.e., 2 x 4, Retrieve), and performed mental complex calculation (i.e., 32 x 24, Compute). Compared to Read, Retrieve engaged a left parieto-premotor circuit representing a developmental trace of a finger-counting representation that mediates, by extension, the numerical knowledge in adult. Beside this basic network, Retrieve involved a naming network, including the left anterior insula and the right cerebellar cortex, while it did not engage the perisylvian language areas, which were deactivated as compared to Rest. In addition to this retrieval network, Compute specifically involved two functional networks: a left parieto-frontal network in charge of the holding of the multidigit numbers in visuospatial working memory and a bilateral inferior temporal gyri related to the visual mental imagery resolution strategy. Overall, these results provide strong evidence of the involvement of visuospatial representations in different levels of mental calculation.

Copyright 2001 Academic Press.

PMID:
11162272
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk