Format

Send to

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2001 Feb 15;263(2):224-35.

Aggrecan domains expected to traffic through the exocytic pathway are misdirected to the nucleus.

Author information

  • 1Department of Cell Biology & Anatomy, FUHS/The Chicago Medical School, North Chicago, Illinois, 60064, USA.

Abstract

In this article, we report the misdirected targeting of expressed aggrecan domains. Aggrecan, the chondroitin sulfate (CS) proteoglycan of cartilage, normally progresses through the exocytic pathway. Proteins expressed from constructs containing the putative aggrecan signal sequence (i.e., the first 23 N-terminal amino acids), specified globular (G) domains G1 and/or G3, and a segment of the CS domain were detected in the endoplasmic reticulum (ER) and Golgi complex. Although proteins expressed from constructs containing the putative signal and G3, but lacking G1, were detected to a limited extent in the secretory pathway, they primarily accumulated in nuclei. Discrete nuclear inclusions were seen when G3 was expressed. Immunoelectron microscopic characterization of the inclusions suggested the association of nuclear G3 with other proteins. When signal-free G3 constructs and those with G3 immediately following the N-terminal signal were expressed, abundant dispersed accumulations filled the nucleoplasm. The data suggest first, that signal-free and signal-containing G3 proteins enter the nucleus from the cytosol, and second, that the entry of signal-containing G3 proteins into the ER lumen is inefficient. Hsp25, Hsp70, and ubiquitin were colocalized with nuclear G3, indicating the involvement of chaperones and the degradative machinery in the formation and/or attempted disposal of the abnormal nuclear inclusions. Overall, the results focus attention on (1) intracellular protein trafficking at the ER membrane and the nuclear envelope and (2) chaperone interactions and mechanisms leading to abnormal protein deposition in the nucleus.

Copyright 2001 Academic Press.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk