Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2001 Jan;12(1):27-36.

Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism.

Author information

  • 1Vanderbilt-Ingram Cancer Center, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.


Transforming growth factor-beta1 (TGF-beta) can be tumor suppressive, but it can also enhance tumor progression by stimulating the complex process of epithelial-to-mesenchymal transdifferentiaion (EMT). The signaling pathway(s) that regulate EMT in response to TGF-beta are not well understood. We demonstrate the acquisition of a fibroblastoid morphology, increased N-cadherin expression, loss of junctional E-cadherin localization, and increased cellular motility as markers for TGF-beta-induced EMT. The expression of a dominant-negative Smad3 or the expression of Smad7 to levels that block growth inhibition and transcriptional responses to TGF-beta do not inhibit mesenchymal differentiation of mammary epithelial cells. In contrast, we show that TGF-beta rapidly activates RhoA in epithelial cells, and that blocking RhoA or its downstream target p160(ROCK), by the expression of dominant-negative mutants, inhibited TGF-beta-mediated EMT. The data suggest that TGF-beta rapidly activates RhoA-dependent signaling pathways to induce stress fiber formation and mesenchymal characteristics.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk