Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2001 Feb 1;166(3):1690-7.

High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL.

Author information

  • 1Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1578, USA.

Abstract

Previously, we observed that high-avidity CTL are much more effective in vivo than low-avidity CTL in elimination of infected cells, but the mechanisms behind their superior activity remained unclear. In this study, we identify two complementary mechanisms: 1) high-avidity CTL lyse infected cells earlier in the course of a viral infection by recognizing lower Ag densities than those distinguished by low-avidity CTL and 2) they initiate lysis of target cells more rapidly at any given Ag density. Alternative mechanisms were excluded, including: 1) the possibility that low-avidity CTL might control virus given more time (virus levels remained as high at 6 days following transfer as at 3 days) and 2) that differences in efficacy might be correlated with homing ability. Furthermore, adoptive transfer of high- and low-avidity CTL into SCID mice demonstrated that transfer of a 10-fold greater amount of low-avidity CTL could only partially compensate for their decreased ability to eliminate infected cells. Thus, we conclude that high-avidity CTL exploit two complementary mechanisms that combine to prevent the spread of virus within the animal: earlier recognition of infected cells when little viral protein has been made and more rapid lysis of infected cells.

PMID:
11160212
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk