Send to:

Choose Destination
See comment in PubMed Commons below
Infect Immun. 2001 Feb;69(2):681-6.

Enhanced immunogenicity of CD4(+) t-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis.

Author information

  • 1Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.


DNA vaccines whose DNA encodes a variety of antigens from Mycobacterium tuberculosis have been evaluated for immunogenicity and protective efficacy. CD8(+) T-cell responses and protection achieved in other infectious disease models have been optimized by using a DNA immunization to prime the immune system and a recombinant virus encoding the same antigen(s) to boost the response. A DNA vaccine (D) and recombinant modified vaccinia virus Ankara (M) in which the DNA encodes early secreted antigenic target 6 and mycobacterial protein tuberculosis 63 synthesized, and each was found to generate specific gamma interferon (IFN-gamma)-secreting CD4(+) T cells. Enhanced CD4(+) IFN-gamma T-cell responses were produced by both D-M and M-D immunization regimens. Significantly higher levels of IFN-gamma were seen with a D-D-D-M immunization regimen. The most immunogenic regimens were assessed in a challenge study and found to produce protection equivalent to that produced by Mycobacterium bovis BCG. Thus, heterologous prime-boost regimens boost CD4(+) as well as CD8(+) T-cell responses, and the use of heterologous constructs encoding the same antigen(s) may improve the immunogenicity and protective efficacy of DNA vaccines against tuberculosis and other diseases.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk