Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Gastroenterology. 2001 Feb;120(2):545-56.

Inhibition of the NA(+)/H(+) exchanger reduces rat hepatic stellate cell activity and liver fibrosis: an in vitro and in vivo study.

Author information

  • 1Department of Gastroenterology, University of Ancona, Italy. clingastro@popsci.unian.it

Abstract

BACKGROUND & AIMS:

The Na(+)/H(+) exchanger is the main intracellular pH (pH(i)) regulator in hepatic stellate cells (HSCs) and plays a key role in regulating proliferation and gene expression. We evaluated the effect of specific inhibition of this exchanger on HSC proliferation and collagen synthesis in vivo and in vitro.

METHODS:

Rat HSCs were incubated in the presence of platelet-derived growth factor (PDGF), transforming growth factor (TGF)-beta1, iron ascorbate (FeAsc), and ferric nitrilotriacetate solution (FeNTA) with or without the Na(+)/H(+) exchanger inhibitor 5-N-ethyl-N-isopropyl-amiloride (EIPA). pH(i) and Na(+)/H(+) exchanger activity, cell proliferation, and type I collagen accumulation were measured by using the fluorescent dye 2',7'-bis-(carboxyethyl)-5(6)-carboxyfluorescein, by immunohistochemistry for bromodeoxyuridine, and by enzyme-linked immunosorbent assay, respectively. In vivo liver fibrosis was induced by dimethylnitrosamine administration and bile duct ligation (BDL) in rats treated or not treated with amiloride.

RESULTS:

PDGF, FeAsc, and FeNTA increased Na(+)/H(+) exchange activity and induced HSC proliferation. TGF-beta1 had no effect on the Na(+)/H(+) exchanger and was able, as for FeAsc and FeNTA, to induce type I collagen accumulation. EIPA inhibited all the effects determined by PDGF, FeAsc, and FeNTA and had no effect on TGF-beta1-induced collagen accumulation. In vivo, amiloride reduced HSC proliferation, activation, collagen deposition, and collagen synthesis.

CONCLUSIONS:

The Na(+)/H(+) exchanger can play a key role in the development of liver fibrosis and in HSC activation in vivo.

Comment in

PMID:
11159895
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk