Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anesth Analg. 2001 Feb;92(2):299-305.

Ethanol enhances the functional recovery of stunned myocardium independent of K(ATP) channels in dogs.

Author information

  • 1Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, 53226, USA.

Abstract

Chronic, intermittent exposure to small amounts of ethanol reduces myocardial infarct size in vivo. We tested the hypothesis that acute administration of ethanol enhances the functional recovery of stunned myocardium and that adenosine triphosphate-dependent potassium (K(ATP)) channels mediate this beneficial effect. Barbiturate-anesthetized dogs were instrumented for measurement of aortic and left ventricular pressure, +dP/dt(max), and subendocardial segment shortening (%SS) and were subjected to five 5-min periods of coronary artery occlusion, each separated by 5 min of reperfusion followed by a 3-h final reperfusion. In four groups (n = 7 each), dogs received 0.9% saline or ethanol (0.25, 0.5, or 1.0 g/kg over 30 min) in a random manner before occlusions and reperfusions. In other groups (n = 7 each), dogs received the K(ATP) channel antagonist glyburide (0.3 mg/kg, IV) 30 min before saline or ethanol (0.25 g/kg) was administered. Dogs receiving saline or glyburide alone demonstrated poor recovery of contractile function during reperfusion (%SS = 0.9% +/- 2.0% and 1.6% +/- 1.2% at 3 h, respectively). Recovery of %SS was enhanced in dogs receiving the 0.25- and 0.5-g/kg doses of ethanol (10.0% +/- 1.8% and 8.6% +/- 2.2% at 3 h, respectively) independent of alterations in hemodynamics or coronary collateral blood flow (radioactive microspheres). Glyburide did not affect improvement of recovery of stunned myocardium produced by ethanol (11.8% +/- 2.2% at 3 h). The results indicate that ethanol enhances the functional recovery of stunned myocardium independent of K(ATP) channels in vivo.

PMID:
11159220
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk