Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2001 Feb;18(2):235-45.

Multiple lineages of R1 retrotransposable elements can coexist in the rDNA loci of Drosophila.

Author information

  • 1Department of Biology, University of Rochester, Rochester, NY 14627, USA.

Abstract

R1 non-long terminal repeat retrotransposable elements insert specifically into the 28S rRNA genes of arthropods. One aspect of R1 evolution that has been difficult to explain is the presence of divergent lineages of R1 in the rDNA loci of the same species. Multiple lineages should compete for a limited number of insertion sites, in addition to being subject to the concerted evolution processes homogenizing the rRNA genes. The presence of multiple lineages suggests either the ability of the elements to overcome these factors and diverge within rDNA loci, or the introduction of new lineages by horizontal transmission. To address this issue, we attempted to characterize the complete set of R1 elements in the rDNA locus from five Drosophila species groups (melanogaster, obscura, testacea, quinaria, and repleta). Two major R1 lineages, A and B, that diverged about 100 MYA were found to exist in Drosophila. Elements of the A lineage were found in all 35 Drosophila species tested, while elements of the B lineage were found in only 11 species from three species groups. Phylogenetic analysis of the R1 elements, supported by comparison of their rates of nucleotide sequence substitution, revealed that both the A and the B lineages have been maintained by vertical descent. The B lineage was less stable and has undergone numerous, independent elimination events, while the A lineage has diverged into three sublineages, which were, in turn, differentially stable. We conclude that while the differential retention of multiple lineages greatly complicates its phylogenetic history, the available R1 data continue to be consistent with the strict vertical descent of these elements.

PMID:
11158382
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk