Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Vitam Horm. 2001;61:103-19.

The biosynthesis of nicotinamide adenine dinucleotides in bacteria.

Author information

  • 1Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.

Abstract

The nicotinamide adenine dinucleotides (NAD, NADH, NADP, and NADPH) are essential cofactors in all living systems and function as hydride acceptors (NAD, NADP) and hydride donors (NADH, NADPH) in biochemical redox reactions. The six-step bacterial biosynthetic pathway begins with the oxidation of aspartate to iminosuccinic acid, which is then condensed with dihydroxyacetone phosphate to give quinolinic acid. Phosphoribosylation and decarboxylation of quinolinic acid gives nicotinic acid mononucleotide. Adenylation of this mononucleotide followed by amide formation completes the biosynthesis of NAD. An additional phosphorylation gives NADP. This review focuses on the mechanistic enzymology of this pathway in bacteria.

PMID:
11153263
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk