Format

Send to

Choose Destination
See comment in PubMed Commons below
Diabetes. 2001 Jan;50(1):56-62.

Glucagon-like peptide 1 stimulates lipolysis in clonal pancreatic beta-cells (HIT).

Author information

  • 1Evans Department of Medicine, Boston Medical Center, Massachusetts 02118, USA.

Abstract

Glucagon-like peptide 1 (GLP-1) is the most potent physiological incretin for insulin secretion from the pancreatic beta-cell, but its mechanism of action has not been established. It interacts with specific cell-surface receptors, generates cAMP, and thereby activates protein kinase A (PKA). Many changes in pancreatic beta-cell function have been attributed to PKA activation, but the contribution of each one to the secretory response is unknown. We show here for the first time that GLP-1 rapidly released free fatty acids (FFAs) from cellular stores, thereby lowering intracellular pH (pHi) and stimulating FFA oxidation in clonal beta-cells (HIT). Similar changes were observed with forskolin, suggesting that stimulation of lipolysis was a function of PKA activation in beta-cells. Triacsin C, which inhibits the conversion of FFAs to long-chain acyl CoA (LC-CoA), enhanced basal FFA efflux as well as GLP-1-induced acidification and efflux of FFAs from the cell. Increasing the concentration of the lipase inhibitor orlistat progressively and largely diminished the increment in secretion caused by forskolin. However, glucose-stimulated secretion was less inhibited by orlistat and only at the highest concentration tested. Because the acute addition of FFAs also increases glucose-stimulated insulin secretion, these data suggest that the incretin function of GLP-1 may involve a major role for lipolysis in cAMP-mediated potentiation of secretion.

PMID:
11147795
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk