Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Biol. 2000 Dec 14-28;10(24):1591-4.

DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis.

Author information

  • 1Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France.

Abstract

In plants, transgenes can be silenced at both the transcriptional [1] and post-transcriptional levels [2]. Methylation of the transgene promoter correlates with transcriptional gene silencing (TGS) [3] whereas methylation of the coding sequence is associated with post-transcriptional gene silencing (PTGS) [4]. In animals, TGS requires methylation and changes in chromatin conformation [5]. The involvement of methylation during PTGS in plants is unclear and organisms with non-methylated genomes such as Caenorhabditis elegans or Drosophila can display RNA interference (RNAi), a silencing process mechanistically related to PTGS [6]. Here, we crossed Arabidopsis mutants impaired in a SWI2/SNF2 chromatin component (ddm1 [7]) or in the major DNA methyltransferase (met1 [8] and E. Richards, personal communication) with transgenic lines in which a reporter consisting of the cauliflower mosaic virus 35S promoter fused to the beta-glucuronidase (GUS) gene (35S-GUS) was silenced by TGS or PTGS. We observed an efficient release of 35S-GUS TGS by both the ddm1 and met1 mutations and stochastic release of 35S-GUS PTGS by these two mutations during development. These results show that DNA methylation and chromatin structure are common regulators of TGS and PTGS.

PMID:
11137011
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk