Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Yeast. 2001 Jan 15;18(1):49-60.

The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain.

Author information

  • 1Department of Veterinary Pathobiology, University of Illinois, Urbana, IL 61802, USA. lhoyer@uiuc.edu

Abstract

ALS genes of Candida albicans encode a family of cell-surface glycoproteins with a three-domain structure. Each Als protein has a relatively conserved N-terminal domain, a central domain consisting of a tandemly repeated motif, and a serine-threonine-rich C-terminal domain that is relatively variable across the family. The ALS family exhibits several types of variability that indicate the importance of considering strain and allelic differences when studying ALS genes and their encoded proteins. Analysis of ALS5 provided additional evidence of variability within the ALS family. Comparison of the ALS5 sequence from two strains indicated sequence differences larger than strain or allelic mismatches observed for other C. albicans genes. Screening a collection of commonly used C. albicans strains and clinical isolates indicated that ALS5 is not present in several of these strains, supporting the conclusion that the Als protein profile is variable among C. albicans isolates. Physical mapping of ALS5 showed that it is located close to ALS1 on chromosome 6. The N-terminal domain of Als5p was produced in Pichia pastoris to initiate structural analysis of this portion of the protein. The hydrophobic character of this portion of the protein was exploited in the purification scheme. Circular dichroism analysis of the purified, authenticated protein yielded a high content of antiparallel beta-sheet and little to no alpha-helical structure. These results are consistent with the conclusion that the N-terminal domain of Als5p has an immunoglobulin fold structure similar to that found in many cell adhesion molecules. Gene sequences of C. albicans ALS5 (Accession No. AF068866) and TPI1 (Accession No. AF124845) have been deposited in the GenBank database.

Copyright 2000 John Wiley & Sons, Ltd.

PMID:
11124701
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk