Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Mar 23;276(12):8898-903. Epub 2000 Dec 12.

ATM is required for IkappaB kinase (IKKk) activation in response to DNA double strand breaks.

Author information

  • 1Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0636, USA.


Following challenge with proinflammatory stimuli or generation of DNA double strand breaks (DSBs), transcription factor NF-kappaB translocates from the cytoplasm to the nucleus to activate expression of target genes. In addition, NF-kappaB plays a key role in protecting cells from proapoptotic stimuli, including DSBs. Patients suffering from the genetic disorder ataxia-telangiectasia, caused by mutations in the ATM gene, are highly sensitive to inducers of DSBs, such as ionizing radiation. Similar hypersensitivity is displayed by cell lines derived from ataxia-telangiectasia patients or Atm knockout mice. The ATM protein, a member of the phosphatidylinositol 3-kinase (PI3K)-like family, is a multifunctional protein kinase whose activity is stimulated by DSBs. As both ATM and NF-kappaB deficiencies result in increased sensitivity to DSBs, we examined the role of ATM in NF-kappaB activation. We report that ATM is essential for NF-kappaB activation in response to DSBs but not proinflammatory stimuli, and this activity is mediated via the IkappaB kinase complex. DNA-dependent protein kinase, another member of the PI3K-like family, PI3K itself, and c-Abl, a nuclear tyrosine kinase, are not required for this response.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk