Display Settings:

Format

Send to:

Choose Destination
Blood. 2000 Dec 15;96(13):4020-7.

Iron homeostasis: new tales from the crypt.

Author information

  • 1Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, OR 97201-3098, USA.

Abstract

The enterocyte is a highly specialized cell of the duodenal epithelium that coordinates iron uptake and transport into the body. Until recently, the molecular mechanisms underlying iron absorption and iron homeostasis have remained a mystery. This review focuses on the proteins and regulatory mechanisms known to be present in the enterocyte precursor cell and in the mature enterocyte. The recent cloning of a basolateral iron transporter and investigations into its regulation provide new insights into possible mechanisms for iron transport and homeostasis. The roles of proteins such as iron regulatory proteins, the hereditary hemochromatosis protein (HFE)-transferrin receptor complex, and hephaestin in regulating this transporter and in regulating iron transport across the intestinal epithelium are discussed. A speculative, but testable, model for the maintenance of iron homeostasis, which incorporates the changes in the iron-related proteins associated with the life cycle of the enterocyte as it journeys from the crypt to the tip of the villous is proposed.

PMID:
11110669
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk