Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Endocrinology. 2000 Dec;141(12):4793-6.

In vivo effects of bisphosphonates on the osteoclast mevalonate pathway.

Author information

  • 1Department of Bone Biology and Osteoporosis Research, Merck Research Laboratories, West Point, PA 19486, USA.

Abstract

Estrogen deficiency is a leading cause of osteoporosis associated with increased osteoclastic bone resorption. In vitro studies indicate that the clinically used nitrogen-containing bisphosphonates (N-BPs) such as alendronate (ALN), risedronate (RIS) and ibandronate (IBA) suppress bone resorption via inhibition of the mevalonate pathway enzyme farnesyl diphosphate (FPP) synthase in osteoclasts (Ocs). The object of this study was to test the hypothesis that N-BPs inhibit the mevalonate pathway of Ocs in vivo. The mevalonate pathway enzyme hydroxymethyl-glutaryl-coenzyme A reductase (HMGR), is modulated by feedback inhibition from downstream metabolites. We therefore evaluated the in vivo expression of HMGR in Ocs from animals treated with BP. The N-BPs, ALN, IBA and RIS, selectively suppressed HMGR expression in up to 85% of rat tibia osteoclasts, after 48 hr treatment. Etidronate and clodronate, bisphosphonates that do not inhibit FPP synthase, were without effect. Simvastatin treatment opposed ALN reduction of HMGR expression, suggesting regulation by a metabolite(s) between mevalonate and FPP. These data provide the first in vivo evidence for N-BP effects on the mevalonate pathway in osteoclasts, and strongly support the hypothesis that N-BPs act via this mechanism.

PMID:
11108295
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk