Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Phys Lipids. 2000 Nov;108(1-2):53-70.

Cellular signal transduction by anandamide and 2-arachidonoylglycerol.

Author information

  • 1Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA. ahowlett@wpo.nccu.edu

Abstract

Anandamide (arachidonylethanolamide) and 2-arachidonoylglycerol mediate many of their actions via either CB(1) or CB(2) cannabinoid receptor subtypes. These agonist-receptor interactions result in activation of G proteins, particularly those of the G(i/o) family. Signal transduction pathways that are regulated by these G proteins include inhibition of adenylyl cyclase, regulation of ion currents (inhibition of voltage-gated L, N and P/Q Ca(2+)-currents; activation of K(+) currents); activation of focal adhesion kinase (FAK), mitogen activated protein kinase (MAPK) and induction of immediate early genes; and stimulation of nitric oxide synthase (NOS). Other effects of anandamide and/or 2-arachidonoylglycerol that are not mediated via cannabinoid receptors include inhibition of L-type Ca(2+) channels, stimulation of VR(1) vanilloid receptors, transient changes in intracellular Ca(2+), and disruption of gap junction function. Cardiovascular regulation by anandamide appears to occur by a variety of receptor-mediated and non-receptor-mediated mechanisms. This review will describe and evaluate each of these signal transduction pathways and mechanisms.

PMID:
11106782
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk