Display Settings:


Send to:

Choose Destination
Eur J Biochem. 2000 Dec;267(24):6976-81.

Evidence for an evolutionary conserved role of bone morphogenetic protein growth factors and phox2 transcription factors during noradrenergic differentiation of sympathetic neurons. Induction of a putative synexpression group of neurotransmitter-synthesizing enzymes.

Author information

  • Institut für Neuroanatomie, Anatomie und Zellbiologie, Interdisziplinäres Zentrum für Neurowissenschaften, Heidelberg, Germany. uwe.ernsberger@urz.uni-heidelberg.de


The noradrenergic transmitter phenotype in postganglionic sympathetic neurons is induced early during embryonic development in avian and mammalian primary sympathetic ganglia. The simultaneous expression of tyrosine hydroxylase and dopamine beta-hydroxylase, enzymes of the noradrenaline biosynthesis pathway, indicates that different genes contributing to the noradrenergic transmitter phenotype are regulated as a synexpression group. This conclusion is supported by the demonstration of bone morphogenetic protein (BMP) growth factors and Phox2 transcription factors being necessary for the expression of both tyrosine hydroxylase and dopamine beta-hydroxylase in differentiating sympathetic neurons. The close similarity in the expression patterns of the relevant genes as well as in the function of BMPs and Phox2s between avian and mammalian embryos strongly suggests that noradrenergic induction occurs along a conserved signalling pathway in these vertebrate classes.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk