Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Mar 9;276(10):7366-75. Epub 2000 Dec 4.

Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signaling.

Author information

  • 1Scios Inc., Sunnyvale, California 94086, USA.

Abstract

The majority of cases with early onset familial Alzheimer's disease have been attributed to mutations in the presenilin 1 (PS1) gene. PS1 protein is a component of a high molecular weight membrane-bound complex that also contains beta-catenin. The physiological relevance of the association between PS1 and beta-catenin remains controversial. In this study, we report the identification and functional characterization of a highly conserved glycogen synthase kinase-3beta consensus phosphorylation site within the hydrophilic loop domain of PS1. Site-directed mutagenesis, together with in vitro and in vivo phosphorylation assays, indicates that PS1 residues Ser(353) and Ser(357) are glycogen synthase kinase-3beta targets. Substitution of one or both of these residues greatly reduces the ability of PS1 to associate with beta-catenin. By disrupting this interaction, we demonstrate that the association between PS1 and beta-catenin has no effect on Abeta peptide production, beta-catenin stability, or cellular susceptibility to apoptosis. Significantly, in the absence of PS1/beta-catenin association, we found no alteration in beta-catenin signaling using induction of this pathway by exogenous expression of Wnt-1 or beta-catenin and a Tcf/Lef transcriptional assay. These results argue against a pathologically relevant role for the association between PS1 and beta-catenin in familial Alzheimer's disease.

PMID:
11104755
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk