Loss of heterozygosity at chromosomes 3, 6, 8, 11, 16, and 17 in ovarian cancer: correlation to clinicopathological variables

Cancer Genet Cytogenet. 2000 Oct 1;122(1):49-54. doi: 10.1016/s0165-4608(00)00279-x.

Abstract

Tumor specimens from 78 epithelial ovarian cancer patients were examined for loss of heterozygosity (LOH) at 11 microsatellite markers at chromosomes 3p14.2, 6q27, 8p12, 11p15.5, 11q23.1-q24, 16q24.3, and 17p13.1, to evaluate the involvement, possible clustering, and prognostic significance of these lesions in the progression of the disease. The LOH analysis was performed on polymerase chain reaction (PCR)-amplified DNA from sections of paraffin-embedded tumor and normal tissue pairs. In addition to primary tumors, specimens of metastatic tissues were studied from 19 patients. In the combined results from primary and metastatic tumors, LOH frequencies varied between 31% (6q27) and 69% (17p13.1). Only LOH at chromosomal regions 3p14.2 (D3S1300), 11p15.5 (D11S1318), 11q23.3-q24 (D11S1340 and D11S912), 16q24.3 (D16S476 and D16S3028), and 17p13.1 (D17S938) was associated with an adverse disease course. Our results indicate that LOH at 17p13.1 occurs independently from the other chromosomal sites studied, and is an early event in ovarian tumorigenesis. The LOH at 16q24.3, 11q23.3/q24, and 11p15.5 seems to occur later. The LOH at 11p15.5 and 11q23.3 was associated with reduced cancer-specific survival time; therefore, the studied markers could be located close to genes with influence on patient survival. Of the studied chromosomal regions, the most important tumor suppressor genes involved in the evolution of ovarian cancer appear to be located on chromosomes 11, 16, and 17. The genetic heterogeneity observed in primary and metastatic specimens demonstrates that there are multiple pathways involved in the progression of ovarian cancer.

MeSH terms

  • Chromosome Deletion
  • Chromosomes, Human*
  • Female
  • Humans
  • Loss of Heterozygosity*
  • Ovarian Neoplasms / genetics*
  • Ovarian Neoplasms / pathology