Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2000 Aug;16(8):707-26.

Genetic network inference: from co-expression clustering to reverse engineering.

Author information

  • 1University of New Mexico, Department of Computer Science, Albuquerque, NM 87131, USA. patrik@cs.umm.edu

Abstract

MOTIVATION:

Advances in molecular biological, analytical and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-cluster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e. who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting and bioengineering.

PMID:
11099257
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk