Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2000 Dec;279(6):F1014-26.

Regulation of AQP6 mRNA and protein expression in rats in response to altered acid-base or water balance.

Author information

  • 1Department of Cell Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark.

Abstract

In the rat, aquaporin-6 (AQP6) is mainly localized in intercalated cells (ICs) in collecting ducts, where it is exclusively associated with intracellular vesicles. In this study, we examined whether AQP6 protein and mRNA expression were regulated in the inner medulla or inner stripe of the outer medulla. Rats treated with dietary alkali or acid load for 7 days with a fixed daily water intake revealed appropriate changes in urine pH but unchanged urine output. AQP6 protein and mRNA abundance were increased in alkali-loaded rats (187 +/- 18 and 151 +/- 17% of control, respectively), whereas no changes were observed in acid-loaded rats. Immunohistochemistry revealed increased IC AQP6 labeling in alkali-loaded rats but not in acid-loaded rats. In contrast, administration of NH(4)Cl in the drinking water for 2 wk (free access to water) revealed a significant increase in AQP6 protein abundance (194 +/- 9% of control), but this was associated with increased water intake. Combined, this suggests that AQP6 expression was not affected by acid loading per se but rather was in response to changes in water intake. Consistent with this, water loading for 48 h was associated with increased AQP6 protein abundance, compared with thirsted rats. Moreover, rats with lithium-induced nephrogenic diabetes insipidus had a threefold increase in both AQP6 protein and mRNA expression. Overall, these results suggest that AQP6 expression in collecting duct ICs is regulated by altered acid/alkali load or water balance. Thus AQP6 may contribute to maintenance of acid-base homeostasis and water balance.

PMID:
11097619
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk