Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2000 Dec 1;304(3):435-45.

Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 A resolution.

Author information

  • 1Department of Structural Biology, West Point, PA, 19486, USA. youwei_yan@merck.com

Abstract

MurF is required to catalyze the final step in the synthesis of the cytoplasmic precursor of the bacterial cell wall peptidoglycan, rendering it an attractive target for antibacterial drug development. The crystal structure of the MurF apo-enzyme has been determined using the multiwavelength anomalous dispersion method and refined to 2.3 A resolution. It contains three consecutive open alpha/beta-sheet domains. In comparison with the complex crystal structures of MurD and its substrates, The topology of the N-terminal domain of MurF is unique, while its central and C-terminal domains exhibit similar mononucleotide and dinucleotide-binding folds, respectively. The apo-enzyme of MurF crystal structure reveals an open conformation with the three domains juxtaposed in a crescent-like arrangement creating a wide-open space where substrates are expected to bind. As such, catalysis is not feasible and significant domain closure is expected upon substrate binding.

Copyright 2000 Academic Press.

PMID:
11090285
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk