Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Res Toxicol. 2000 Nov;13(11):1149-57.

Identification of DNA adducts of acetaldehyde.

Author information

  • 1University of Minnesota Cancer Center, Minneapolis, Minnesota 55455, USA.

Abstract

Acetaldehyde is a mutagen and carcinogen which occurs widely in the human environment, sometimes in considerable amounts, but little is known about its reactions with DNA. In this study, we identified three new types of stable acetaldehyde DNA adducts, including an interstrand cross-link. These were formed in addition to the previously characterized N(2)-ethylidenedeoxyguanosine. Acetaldehyde was allowed to react with calf thymus DNA or deoxyguanosine. The DNA was isolated and hydrolyzed enzymatically; in some cases, the DNA was first treated with NaBH(3)CN. Reaction mixtures were analyzed by HPLC, and adducts were isolated and characterized by UV, (1)H NMR, and MS. The major adduct was N(2)-ethylidenedeoxyguanosine (1), which was identified as N(2)-ethyldeoxyguanosine (7) after treatment of the DNA with NaBH(3)CN. The new acetaldehyde adducts were 3-(2-deoxyribos-1-yl)-5,6,7, 8-tetrahydro-8-hydroxy-6-methylpyrimido[1,2-a]purine-10(3H)one (9), 3-(2-deoxyribos-1-yl)-5,6,7,8-tetrahydro-8-(N(2)-deoxyguanosyl+ ++)- 6-methylpyrimido[1,2-a]purine-10(3H)one (12), and N(2)-(2, 6-dimethyl-1,3-dioxan-4-yl)deoxyguanosine (11). Adduct 9 has been previously identified in reactions of crotonaldehyde with DNA. However, the distribution of diastereomers was different in the acetaldehyde and crotonaldehyde reactions, indicating that the formation of 9 from acetaldehyde does not proceed through crotonaldehyde. Adduct 12 is an interstrand cross-link. Although previous evidence indicates the formation of cross-links in DNA reacted with acetaldehyde, this is the first reported structural characterization of such an adduct. This adduct is also found in crotonaldehyde-deoxyguanosine reactions, but in a diastereomeric ratio different than that observed here. A common intermediate, N(2)-(4-oxobut-2-yl)deoxyguanosine (6), is proposed to be involved in formation of adducts 9 and 12. Adduct 11 is produced ultimately from 3-hydroxybutanal, the major aldol condensation product of acetaldehyde. Levels of adducts 9, 11, and 12 were less than 10% of those of N(2)-ethylidenedeoxyguanosine (1) in reactions of acetaldehyde with DNA. As nucleosides, adducts 9, 11, and 12 were stable, whereas N(2)-ethylidenedeoxyguanosine (1) had a half-life of 5 min. These new stable adducts of acetaldehyde may be involved in determination of its mutagenic and carcinogenic properties.

PMID:
11087437
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk