Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2000 Dec;279(6):H2829-37.

Mechanisms by which bradykinin promotes fibrosis in vascular smooth muscle cells: role of TGF-beta and MAPK.

Author information

  • 1Department of Medicine, Medical University of South Carolina, Charleston, USA.

Abstract

Accumulation of extracellular matrix (ECM) is a hallmark feature of vascular disease. We have previously shown that hyperglycemia induces the expression of B(2)-kinin receptors in vascular smooth muscle cells (VSMC) and that bradykinin (BK) and hyperglycemia synergize to stimulate ECM production. The present study examined the cellular mechanisms through which BK contributes to VSMC fibrosis. VSMC treated with BK (10(-8) M) for 24 h significantly increased alpha(2)(I) collagen mRNA levels. In addition, BK produced a two- to threefold increase in alpha(2)(I) collagen promoter activity in VSMC transfected with a plasmid containing the alpha(2)(I) collagen promoter. Furthermore, treatment of VSMC with BK for 24 h produced a two- to threefold increase in the secretion rate of tissue inhibitor of metalloproteinase 1 (TIMP-1). The increase in alpha(2)(I) collagen mRNA levels and alpha(2)(I) collagen promoter activity, as well as TIMP-1 secretion, in response to BK were blocked by anti-transforming growth factor-beta (anti-TGF-beta) neutralizing antibodies. BK (10(-8) M) increased the endogenous production of TGF-beta1 mRNA and protein levels. Inhibition of the mitogen-activated protein kinase (MAPK) pathway by PD-98059 inhibited the increase of alpha(2)(I) collagen promoter activity, TIMP-1 production, and TGF-beta1 protein levels observed in response to BK. These findings provide the first evidence that BK induces collagen type I and TIMP-1 production via autocrine activation of TGF-beta1 and implicate MAPK pathway as a key player in VSMC fibrosis in response of BK.

PMID:
11087238
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk