Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Feb 9;276(6):3929-36. Epub 2000 Nov 17.

Thyroid hormone response element sequence and the recruitment of retinoid X receptors for thyroid hormone responsiveness.

Author information

  • 1Division of Endocrinology and Metabolism, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0678, USA.

Abstract

Thyroid hormone receptors (TRs) are transcription factors that bind to thyroid hormone response elements (TREs) in the regulatory regions of target genes. TRs are thought to activate transcription primarily as heterodimers with retinoid X receptors (RXRs), with RXR binding upstream to the two directly repeated half-sites in a typical TRE. However, given that TRs and RXRs prefer to bind to different DNA sequences (T(A/G)AGGTCA and GGGGTCA), we postulate that only certain TREs require RXR-TR heterodimerization, depending on the TRE sequence. We have tested this hypothesis by comparing in Saccharomyces cerevisiae the functional activity of TR +/- RXR on 10 naturally occurring mammalian TREs. S. cerevisiae was used as a model system because yeast lack endogenous nuclear receptors and thus can be manipulated to express TRs and/or RXRs. We first studied ligand-independent reporter gene activation, which reflects the activity of the activator function 1 (AF-1) domain. The 10 TREs formed a continuous spectrum from being fully dependent on RXR for TR AF-1 activity to being essentially independent of RXR. Relative independence of RXR generally was seen when the TRE upstream half-site has a TA or TG 5' to the core hexamer. Gel mobility shift assays revealed that functional independence of RXR correlates with the strong binding of TR alone, whereas more RXR dependence correlates with higher binding of RXR-TR heterodimers. Restoration of ligand-dependent (AF-2 domain) reporter gene activation was achieved by expression of the coactivator TIF2. This ligand-induced stimulation was stronger in the presence of TR alone than with RXR plus TR, suggesting a preference for TIF2 activation of TR homodimers. Overall the data support the notion that the TRE sequence plays an important role in determining the nuclear hormone receptor and coactivator requirements for TR action.

PMID:
11084025
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk