Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 2000 Nov 15;19(22):6020-9.

Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex.

Author information

  • 1Unité de Génétique des Déficits Sensoriels, CNRS URA 1968 and Unité des Interactions Bactéries-Cellules, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris cedex 15, France.

Abstract

Defects in myosin VIIA are responsible for deafness in the human and mouse. The role of this unconventional myosin in the sensory hair cells of the inner ear is not yet understood. Here we show that the C-terminal FERM domain of myosin VIIA binds to a novel transmembrane protein, vezatin, which we identified by a yeast two-hybrid screen. Vezatin is a ubiquitous protein of adherens cell-cell junctions, where it interacts with both myosin VIIA and the cadherin-catenins complex. Its recruitment to adherens junctions implicates the C-terminal region of alpha-catenin. Taken together, these data suggest that myosin VIIA, anchored by vezatin to the cadherin-catenins complex, creates a tension force between adherens junctions and the actin cytoskeleton that is expected to strengthen cell-cell adhesion. In the inner ear sensory hair cells vezatin is, in addition, concentrated at another membrane-membrane interaction site, namely at the fibrillar links interconnecting the bases of adjacent stereocilia. In myosin VIIA-defective mutants, inactivity of the vezatin-myosin VIIA complex at both sites could account for splaying out of the hair cell stereocilia.

PMID:
11080149
[PubMed - indexed for MEDLINE]
PMCID:
PMC305826
Free PMC Article

Images from this publication.See all images (7)Free text

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk