Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Res. 2000 Nov;10(11):1807-16.

CART classification of human 5' UTR sequences.

Author information

  • 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

Abstract

A nonredundant database of 2312 full-length human 5'-untranslated regions (UTRs) was carefully prepared using state-of-the-art experimental and computational technologies. A comprehensive computational analysis of this data was conducted for characterizing the 5' UTR features. Classification and regression tree (CART) analysis was used to classify the data into three distinct classes. Class I consists of mRNAs that are believed to be poorly translated with long 5' UTRs filled with potential inhibitory features. Class II consists of terminal oligopyrimidine tract (TOP) mRNAs that are regulated in a growth-dependent manner, and class III consists of mRNAs with favorable 5' UTR features that may help efficient translation. The most accurate tree we found has 92.5% classification accuracy as estimated by cross validation. The classification model included the presence of TOP, a secondary structure, 5' UTR length, and the presence of upstream AUGs (uAUGs) as the most relevant variables. The present classification and characterization of the 5' UTRs provide precious information for better understanding the translational regulation of human mRNAs. Furthermore, this database and classification can help people build better computational models for predicting the 5'-terminal exon and separating the 5' UTR from the coding region.

PMID:
11076865
[PubMed - indexed for MEDLINE]
PMCID:
PMC310970
Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1
Figure 2
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk