Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2000 Nov 15;20(22):8269-78.

Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus.

Author information

  • 1Molecular Neurobiology Laboratory and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. contractor@salk.edu

Abstract

To understand the physiological role of kainate receptors and their participation in seizure induction in animal models of epilepsy, it will be necessary to develop a comprehensive description of their action in the CA3 region of the hippocampus. Activation of presynaptic kainate receptors depresses excitatory synaptic transmission at mossy fiber and associational-commissural inputs to CA3 pyramidal neurons (Vignes et al., 1998; Bortolotto et al., 1999; Kamiya and Ozawa, 2000). In this study, we use gene-targeted mice lacking glutamate receptor 5 (GluR5) or GluR6 kainate receptor subunits to identify the receptor subunits that comprise the kainate receptors responsible for presynaptic modulation of CA3 transmission. We found that bath application of kainate (3 microm) profoundly reduced EPSCs at mossy fiber and collateral synapses in neurons from wild-type and GluR5(-/-) mice but had no effect on EPSCs in neurons from GluR6(-/-) mice. These results therefore contrast with previous studies that supported a role for GluR5-containing receptors at mossy fiber and associational-commissural synapses (Vignes et al., 1998; Bortolotto et al., 1999). Surprisingly, at perforant path synapses kainate receptor activation enhanced transmission; this potentiation was abolished in both GluR5 and GluR6 knock-out mice. Kainate receptors thus play multiple and complex roles to modulate excitatory synaptic transmission in the CA3 region of the hippocampus.

PMID:
11069933
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk