Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int Rev Cytol. 2001;201:115-208.

Calcium in ciliated protozoa: sources, regulation, and calcium-regulated cell functions.

Author information

  • 1Department of Biology, University of Konstanz, Germany.

Abstract

In ciliates, a variety of processes are regulated by Ca2+, e.g., exocytosis, endocytosis, ciliary beat, cell contraction, and nuclear migration. Differential microdomain regulation may occur by activation of specific channels in different cell regions (e.g., voltage-dependent Ca2+ channels in cilia), by local, nonpropagated activation of subplasmalemmal Ca stores (alveolar sacs), by different sensitivity thresholds, and eventually by interplay with additional second messengers (cilia). During stimulus-secretion coupling, Ca2+ as the only known second messenger operates at approximately 5 microM, whereby mobilization from alveolar sacs is superimposed by "store-operated Ca2+ influx" (SOC), to drive exocytotic and endocytotic membrane fusion. (Content discharge requires binding of extracellular Ca2+ to some secretory proteins.) Ca2+ homeostasis is reestablished by binding to cytosolic Ca2+-binding proteins (e.g., calmodulin), by sequestration into mitochondria (perhaps by Ca2+ uniporter) and into endoplasmic reticulum and alveolar sacs (with a SERCA-type pump), and by extrusion via a plasmalemmal Ca2+ pump and a Na+/Ca2+ exchanger. Comparison of free vs total concentration, [Ca2+] vs [Ca], during activation, using time-resolved fluorochrome analysis and X-ray microanalysis, respectively, reveals that altogether activation requires a calcium flux that is orders of magnitude larger than that expected from the [Ca2+] actually required for local activation.

PMID:
11057832
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk