Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Lipidol. 2000 Oct;11(5):465-71.

Phospholipase A2 and small, dense low-density lipoprotein.

Author information

  • 1Wallenberg Laboratory, Götenberg University, Sweden. Eva.Hurt@wlab.wall.gu.se

Abstract

High levels of small, dense LDL in plasma are associated with increased risk for cardiovascular disease. There are some biochemical characteristics that may render small, dense LDL particles more atherogenic than larger, buoyant LDL particles. First, small, dense LDL particles contain less phospholipids and unesterified cholesterol in their surface monolayer than do large, buoyant LDL particles. This difference in lipid content appears to induce changes in the conformation of apolipoprotein B-100, leading to more exposure of proteoglycan-binding regions. This may be one reason for the high-affinity binding of small, dense LDL to arterial proteoglycans. Reduction of the phospholipid content in the surface monolayer LDL by treatment with secretory phospholipase A2 (sPLA2) forms small, dense LDL with an enhanced tendency to interact with proteoglycans. Circulating levels of sPLA2-IIA appears to be an independent risk factor for coronary artery disease and a predictor of cardiovascular events. In addition, in-vivo studies support the hypothesis that sPLA2 proteins contribute to atherogenesis and its clinical consequences. These data suggest that modification of LDL by sPLA2 in the arterial tissue or in plasma may be a mechanism for the generation of atherogenic lipoprotein particles in vivo, with a high tendency to be entrapped in the arterial extracellular matrix.

PMID:
11048889
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk