Lack of correlation between DNA strand breakage and p53 protein levels in human fibroblast strains exposed to ultraviolet lights

Photochem Photobiol. 2000 Oct;72(4):562-8. doi: 10.1562/0031-8655(2000)072<0562:locbds>2.0.co;2.

Abstract

The contribution of DNA strand breaks accumulating in the course of nucleotide excision repair to upregulation of the p53 tumor suppressor protein was investigated in human dermal fibroblast strains after treatment with 254 nm ultraviolet (UV) light. For this purpose, fibroblast cultures were exposed to UV and incubated for 3 h in the presence or absence of l-beta-D-arabinofuranosylcytosine (araC) and/or hydroxyurea (HU), and then assayed for DNA strand breakage and p53 protein levels. As expected from previous studies, incubation of normal and ataxia telangiectasia (AT) fibroblasts with araC and HU after UV irradiation resulted in an accumulation of DNA strand breaks. Such araC/HU-accumulated strand breaks (reflecting nonligated repair-incision events) following UV irradiation were not detected in xeroderma pigmentosum (XP) fibroblast strains belonging to complementation groups A and G. Western blot analysis revealed that normal fibroblasts exhibited little upregulation of p53 (approximately 1.2-fold) when incubated without araC after 5 J/m2 irradiation, but showed significant (three-fold) upregulation of p53 when incubated with araC after irradiation. AraC is known to inhibit nucleotide excision repair at both the damage removal and repair resynthesis steps. Therefore, the potentiation of UV-induced upregulation of p53 evoked by araC in normal cells may be a consequence of either persistent bulky DNA lesions or persistent incision-associated DNA strand breaks. To distinguish between these two possibilities, we determined p53 induction in AT fibroblasts (which do not upregulate p53 in response to DNA strand breakage) and in XP fibroblasts (which do not exhibit incision-associated breaks after UV irradiation). The p53 response after treatment with 5 J/m2 UV and incubation with araC was similar in AT, XPA, XPG and normal fibroblasts. In addition, exposure of XPA and XPG fibroblasts to UV (5, 10 or 20 J/m2) followed by incubation without araC resulted in a strong upregulation of p53. We further demonstrated that HU, an inhibitor of replicative DNA synthesis (but not of nucleotide excision repair), had no significant impact on p53 protein levels in UV irradiated and unirradiated human fibroblasts. We conclude that upregulation of p53 at early times after exposure of diploid human fibroblasts to UV light is triggered by persistent bulky DNA lesions, and that incision-associated DNA strand breaks accumulating in the course of nucleotide excision repair and breaks arising as a result of inhibition of DNA replication contribute little (if anything) to upregulation of p53.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ataxia Telangiectasia / genetics
  • Ataxia Telangiectasia / metabolism
  • Ataxia Telangiectasia / pathology
  • Cells, Cultured
  • DNA / metabolism
  • DNA / radiation effects
  • DNA Damage*
  • DNA Repair
  • Fibroblasts / metabolism
  • Fibroblasts / radiation effects*
  • Humans
  • Tumor Suppressor Protein p53 / biosynthesis
  • Tumor Suppressor Protein p53 / metabolism*
  • Ultraviolet Rays*
  • Xeroderma Pigmentosum / genetics
  • Xeroderma Pigmentosum / metabolism
  • Xeroderma Pigmentosum / pathology

Substances

  • Tumor Suppressor Protein p53
  • DNA