Format

Send to:

Choose Destination
See comment in PubMed Commons below
Development. 2000 Nov;127(22):4949-58.

Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly.

Author information

  • 1Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bldg. 8, Rm. 107, Bethesda, MD 20892-0822, USA. kuwagner@unmc.edu

Abstract

Bcl-x is a member of the Bcl2 family and has been suggested to be important for the survival and maturation of various cell types including the erythroid lineage. To define the consequences of Bcl-x loss in erythroid cells and other adult tissues, we have generated mice conditionally deficient in the Bcl-x gene using the Cre-loxP recombination system. The temporal and spatial excision of the floxed Bcl-x locus was achieved by expressing the Cre recombinase gene under control of the MMTV-LTR. By the age of five weeks, Bcl-x conditional mutant mice exhibited hyperproliferation of megakaryocytes and a decline in the number of circulating platelets. Three-month-old animals suffered from severe hemolytic anemia, hyperplasia of immature erythroid cells and profound enlargement of the spleen. We demonstrate that Bcl-x is only required for the survival of erythroid cells at the end of maturation, which includes enucleated reticulocytes in circulation. The extensive proliferation of immature erythroid cells in the spleen and bone marrow might be the result of a fast turnover of late red blood cell precursors and accelerated erythropoiesis in response to tissue hypoxia. The increase in cell death of late erythroid cells is independent from the proapoptotic factor Bax, as demonstrated in conditional double mutant mice for Bcl-x and Bax. Mice conditionally deficient in Bcl-x permitted us for the first time to study the effects of Bcl-x deficiency on cell proliferation, maturation and survival under physiological conditions in an adult animal.

PMID:
11044408
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk