Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Jan 12;276(2):1051-6.

Biochemical analysis of the eIF2beta gamma complex reveals a structural function for eIF2alpha in catalyzed nucleotide exchange.

Author information

  • 1Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083, USA.

Abstract

Eukaryotic translation initiation factor eIF2 is a heterotrimer that binds and delivers Met-tRNA(i)(Met) to the 40 S ribosomal subunit in a GTP-dependent manner. Initiation requires hydrolysis of eIF2-bound GTP, which releases an eIF2.GDP complex that is recycled to the GTP form by the nucleotide exchange factor eIF2B. The alpha-subunit of eIF2 plays a critical role in regulating nucleotide exchange via phosphorylation at serine 51, which converts eIF2 into a competitive inhibitor of the eIF2B-catalyzed exchange reaction. We purified a form of eIF2 (eIF2betagamma) completely devoid of the alpha-subunit to further study the role of eIF2alpha in eIF2 function. These studies utilized a yeast strain genetically altered to bypass a deletion of the normally essential eIF2alpha structural gene (SUI2). Removal of the alpha-subunit did not appear to significantly alter binding of guanine nucleotide or Met-tRNA(i)(Met) ligands by eIF2 in vitro. Qualitative assays to detect 43 S initiation complex formation and eIF5-dependent GTP hydrolysis revealed no differences between eIF2betagamma and the wild-type eIF2 heterotrimer. However, steady-state kinetic analysis of eIF2B-catalyzed nucleotide exchange revealed that the absence of the alpha-subunit increased K(m) for eIF2betagamma.GDP by an order of magnitude, with a smaller increase in V(max). These data indicate that eIF2alpha is required for structural interactions between eIF2 and eIF2B that promote wild-type rates of nucleotide exchange. We suggest that this function contributes to the ability of the alpha-subunit to control the rate of nucleotide exchange through reversible phosphorylation.

PMID:
11042214
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk