Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2000 Oct 12;9(17):2553-62.

New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome.

Author information

  • 1Department of Molecular Biosciences and ARC Special Research Centre for the Molecular Genetics of Development, Adelaide University, North Terrace, Adelaide, South Australia, Australia 5005. timothy.cox@adelaide.edu.au

Abstract

Opitz syndrome (OS) is a genetically heterogeneous malformation disorder. Patients with OS may present with a variable array of malformations that are indicative of a disturbance of the primary midline developmental field. Mutations in the C-terminal half of MID1, an RBCC (RING, B-box and coiled-coil) protein, have recently been shown to underlie the X-linked form of OS. Here we show that the MID1 gene spans at least 400 kb, almost twice the distance originally reported and has a minimum of six mRNA isoforms as a result of the alternative use of 5' untranslated exons. In addition, our detailed mutational analysis of MID1 in a cohort of 15 patients with OS has resulted in the identification of seven novel mutations, two of which disrupt the N-terminus of the protein. The most severe of these (E115X) is predicted to truncate the protein before the B-box motifs. In a separate patient, a missense change (L626P) was found that also represents the most C-terminal alteration reported to date. As noted with other C-terminal mutations, GFP fusion constructs demonstrated that the L626P mutant formed cytoplasmic clumps in contrast to the microtubular distribution seen with the wild-type sequence. Notably, however, both N-terminal mutants showed no evidence of cytoplasmic aggregation, inferring that this feature is not pathognomonic for X-linked OS. These new data and the finding of linkage to MID1 in the absence of a demonstrable open reading frame mutation in a further family support the conclusion that X-linked OS results from loss of function of MID1.

PMID:
11030761
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk