Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 2000 Oct 15;351 Pt 2:527-35.

Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction.

Author information

  • 1MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK. Chris.Ponting@anat.ox.ac.uk

Abstract

Sequence database searches, using iterative-profile and Hidden-Markov-model approaches, were used to detect hitherto-undetected homologues of proteins that regulate the endoplasmic reticulum (ER)-associated degradation pathway. The translocon-associated subunit Sec63p (Sec=secretory) was shown to contain a domain of unknown function found twice in several Brr2p-like RNA helicases (Brr2=bad response to refrigeration 2). Additionally, Cue1p (Cue=coupling of ubiquitin conjugation to ER degradation), a yeast protein that recruits the ubiquitin-conjugating (UBC) enzyme Ubc7p to an ER-associated complex, was found to be one of a large family of putative scaffolding-domain-containing proteins that include the autocrine motility factor receptor and fungal Vps9p (Vps=vacuolar protein sorting). Two other yeast translocon-associated molecules, Sec72p and Hrd3p (Hrd=3-hydroxy-3-methylglutaryl-CoA reductase degradation), were shown to contain multiple tetratricopeptide-repeat-like sequences. From this observation it is suggested that Sec72p associates with a heat-shock protein, Hsp70, in a manner analogous to that known for Hop (Hsp70/Hsp90 organizing protein). Finally, the luminal portion of Ire1p (Ire=high inositol-requiring), thought to convey the sensing function of this transmembrane kinase and endoribonuclease, was shown to contain repeats similar to those in beta-propeller proteins. This finding hints at the mechanism by which Ire1p may sense extended unfolded proteins at the expense of compact folded molecules.

PMID:
11023840
[PubMed - indexed for MEDLINE]
PMCID:
PMC1221390
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk