Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Annu Rev Microbiol. 2000;54:413-37.

Oral microbial communities: biofilms, interactions, and genetic systems.

Author information

  • Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA. pkolenbrander@dir.nidcr.nih.gov

Abstract

Oral microbial-plaque communities are biofilms composed of numerous genetically distinct types of bacteria that live in close juxtaposition on host surfaces. These bacteria communicate through physical interactions called coaggregation and coadhesion, as well as other physiological and metabolic interactions. Streptococci and actinomyces are the major initial colonizers of the tooth surface, and the interactions between them and their substrata help establish the early biofilm community. Fusobacteria play a central role as physical bridges that mediate coaggregation of cells and as physiological bridges that promote anaerobic microenvironments which protect coaggregating strict anaerobes in an aerobic atmosphere. New technologies for investigating bacterial populations with 16S rDNA probes have uncovered previously uncultured bacteria and have offered an approach to in situ examination of the spatial arrangement of the participant cells in oral-plaque biofilms. Flow cells with saliva-coated surfaces are particularly useful for studies of biofilm formation and observation. The predicted sequential nature of colonization of the tooth surface by members of different genera can be investigated by using these new technologies and imaging the cells in situ with confocal scanning laser microscopy. Members of at least seven genera now can be subjected to genetic studies owing to the discovery of gene-transfer systems in these genera. Identification of contact-inducible genes in streptococci offers an avenue to explore bacterial responses to their environment and leads the way toward understanding communication among inhabitants of a multispecies biofilm.

PMID:
11018133
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk