Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Dec 15;275(50):39223-30.

BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway.

Author information

  • 1Department of Adult Oncology, Dana Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

Deregulation of cell cycle checkpoints is an almost universal abnormality in human cancers and is most often due to loss-of-function mutations of tumor suppressor genes such as Rb, p53, or p16(INK4a). In this study, we demonstrate that BCR/ABL inhibits the expression of a key cell cycle inhibitor, p27(Kip1), by signaling through a pathway involving phosphatidylinositol 3-kinase (PI3K). p27(Kip1) is a widely expressed inhibitor of cdk2, an essential cell cycle kinase regulating entry into S phase. We demonstrate that the decrease of p27(Kip1) is directly due to BCR/ABL in hematopoietic cells by two different approaches. First, induction of BCR/ABL by a tetracycline-regulated promoter is associated with a reversible down-regulation of p27(Kip1). Second, inhibition of BCR/ABL kinase activity with the Abl tyrosine kinase inhibitor STI571 rapidly increases p27(Kip1) levels. The PI3K inhibitor LY-294002 blocks the ability of BCR/ABL to induce p27(Kip1) down-regulation and inhibits BCR/ABL-induced entry into S phase. The serine/threonine kinase AKT/protein kinase B is a known downstream target of PI3K. Transient expression of an activated mutant of AKT was found to decrease expression of p27(Kip1), even when PI3K was inhibited by LY-294002. The mechanism of p27(Kip1) regulation is primarily related to protein stability, since inhibition of proteasome activity increased p27(Kip1) levels in BCR/ABL-transformed cells, whereas very little change in p27 transcription was found. Overall, these data are consistent with a model in which BCR/ABL suppresses p27(Kip1) protein levels through PI3K/AKT, leading to accelerated entry into S phase. This activity is likely to explain in part previous studies showing that activation of PI3K was required for optimum transformation of hematopoietic cells by BCR/ABL in vitro and in vivo.

PMID:
11010972
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk