Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Q Rev Biol. 2000 Sep;75(3):243-60.

Endocrine disruptors: present issues, future directions.

Author information

  • 1Institute of Reproductive Biology, University of Texas, Austin 78712, USA. crews@mail.utexas.edu

Abstract

A variety of natural products and synthetic chemicals, known collectively as endocrine-disrupting compounds (EDCs), mimic or interfere with the mechanisms that govern vertebrate reproductive development and function. At present, research has focused on (i) the morphological and functional consequences of EDCs; (ii) identifying and determining the relative potencies of synthetic and steroidal compounds that have endocrine-disrupting effects; (iii) the mechanism of action of EDCs at the molecular level; and (iv) the recognition that in "real life," contamination usually reflects mixtures of EDCs. Future research must examine (i) the interactive nature of EDCs, particularly whether the threshold concept as developed in traditional toxicological research applies to these chemicals; (ii) when and how EDCs act at the physiological level, particularly how they may organize the neural substrates of reproductive physiology and behavior; (iii) the various effects these compounds have on different species, individuals, and even tissues; and (iv) how adaptations may evolve in natural populations with continued exposure to EDCs. Several predictions are offered that reflect these new perspectives. Specifically, (i) the threshold assumption will be found not to apply to EDCs because they mimic the actions of endogenous molecules (e.g., estrogen) critical to development; hence, the threshold is automatically exceeded with exposure. (ii) Behavior can compound and magnify the effects of EDCs over successive generations; that is, bioaccumulated EDCs inherited from the mother not only influence the morphological and physiological development of the offspring but also the offsprings' reproductive behavior as adults. This adult behavior, in turn, can have further consequences on the sexual development of their own young. (iii) The sensitivity of a species or an individual to a compound is related to species (individual)-typical concentrations of circulating gonadal steroid hormones. Related to this is the recent finding that alternate forms of the putative receptors are differentially distributed, thereby contributing to the different effects that have been observed. (iv) Except in extraordinary situations, populations often continue to exist in contaminated sites. One possible explanation for this observation that needs to be considered is that animals can rapidly adapt to the nature and level of contamination in their environment. It is unlikely that successive generations coincidentally become insensitive to gonadal steroid hormones fundamentally important as biological regulators of development and reproduction. Rather, adaptive alterations in the genes that encode steroid receptors may occur with chronic exposure to EDCs, allowing the sex hormone receptor to discriminate natural steroids from EDCs.

PMID:
11008698
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk