Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 2000 Oct 15;60(8):1171-8.

Signaling angiogenesis via p42/p44 MAP kinase and hypoxia.

Author information

  • 1Institute of Signaling, Developmental Biology, and Cancer Research, CNRS UMR 6543, Centre Antoine Lacassagne, 06189 Nice, France.

Abstract

Angiogenesis is associated with a number of pathological situations. In this study, we have focused our attention on the role of p42/p44 MAP (mitogen-activated protein) kinases and hypoxia in the control of angiogenesis. We demonstrate that p42/p44 MAP kinases play a pivotal role in angiogenesis by exerting a determinant action at three levels: i) persistent activation of p42/p44 MAP kinases abrogates apoptosis; ii) p42/p44 MAP kinase activity is critical for controlling proliferation and growth arrest of confluent endothelial cells; and iii) p42/p44 MAP kinases promote VEGF (vascular endothelial growth factor) expression by activating its transcription via recruitment of the AP-2/Sp1 (activator protein-2) complex on the proximal region (-88/-66) of the VEGF promoter and by direct phosphorylation of hypoxia-inducible factor 1 alpha (HIF-1 alpha). HIF-1 alpha plays a crucial role in the control of HIF-1 activity, which mediates hypoxia-induced VEGF expression. We show that oxygen-regulated HIF-1 alpha protein levels are not affected by intracellular localization (nucleus versus cytoplasm). Finally, we propose a model which suggests an autoregulatory feedback mechanism controlling HIF-1 alpha and therefore HIF-1-dependent gene expression.

PMID:
11007955
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk