Send to

Choose Destination
See comment in PubMed Commons below
Evolution. 2000 Aug;54(4):1192-206.

The evolution of reproductive isolation in the ectomycorrhizal Hebeloma crustuliniforme aggregate (Basidiomycetes) in northwestern Europe: a phylogenetic approach.

Author information

  • 1Laboratory of Genetics, Wageningen Agricultural University, The Netherlands.


To reconstruct the evolution of reproductive isolation in the ectomycorrhizal Hebeloma crustuliniforme aggregate (Basidiomycetes), phylogenetic relationships were determined between strains that belong to a clade consisting of nine intercompatibility groups (ICGs, biological species). Four of these nine ICGs are partially compatible and belong to the H. crustuliniforme aggregate. Different levels of partial compatibility have been found between these four ICGs. Between ICGs 3 and 4, 15% of the combinations were compatible. One strain was compatible with all isolates of both ICGs 3 and 4 and also with one isolate of ICG 2. Both a nuclear phylogeny, based on ribosomal IGS sequence data, and a mitochondrial phylogeny, based on a group-I intron located in the large subunit ribosomal RNA gene (LrRNA), were reconstructed. The level of incompatibility was compared with the phylogenetic history of individuals belonging to this clade. Different relationships were found between the level of compatibility and the relative age of the most recent common ancestor (MRCA) for different ICGs. On the one hand, the evolution of incompatibility between ICGs 2 and 3/4 is most consistent with the class of "divergence- first" models because a positive correlation was found between the relative age of the MRCA and the level of incompatibility for ICG 2 versus 3/4. On the other hand, the lack of such a correlation for ICGs 3 and 4 shows that (partial) incompatibility between these ICGs has arisen without strong divergence. The ecological (and to a lesser extent geographical) differences found between ICGs 3 and 4 suggest that selection for incompatibility, associated with host tree preference, has been important in the evolution of incompatibility between these two ICGs. The incongruence between the nuclear and mitochondrial trees for ICG 1 could be explained by a hybrid origin of this ICG, with different donors of the mitochondrial and nuclear sequences.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk